Impact of correlation structure assumptions on Model-Based Meta-Analyses (MBMA)

Chay Ngee Lim PhD Candidate, University of Minnesota Pfizer Summer Intern

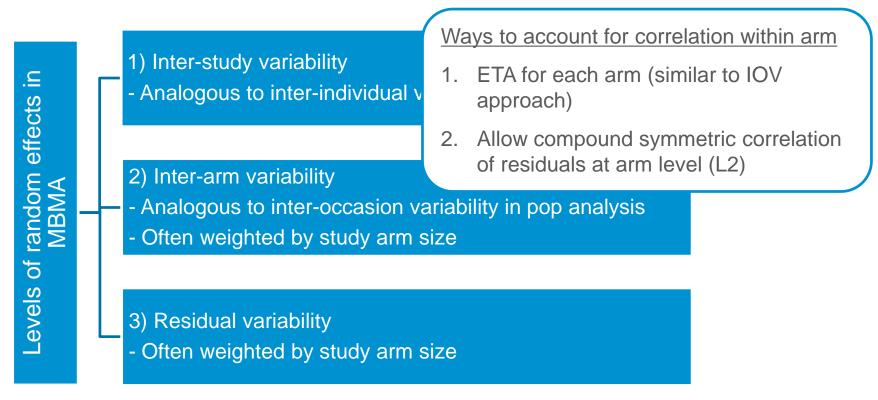
Value of Model Based Meta-Analyses

- Benchmarking of efficacy against existing treatment options
- Understanding of disease progression and time courses of placebo and treatment responses
 - Guide study design
 - Product positioning
 - Key decision making (includes go/no go decision)

• Meta-analysis of individual patient data is preferred over aggregate data, but realistically often unavailable

Multi-level correlations in MBMA

- Observations within study are correlated
 - Patients from common population, study-specific factors
- Mean observations over time within an arm are correlated
 - Same set of patients contributing to the aggregate values



Ignore

Inflation of

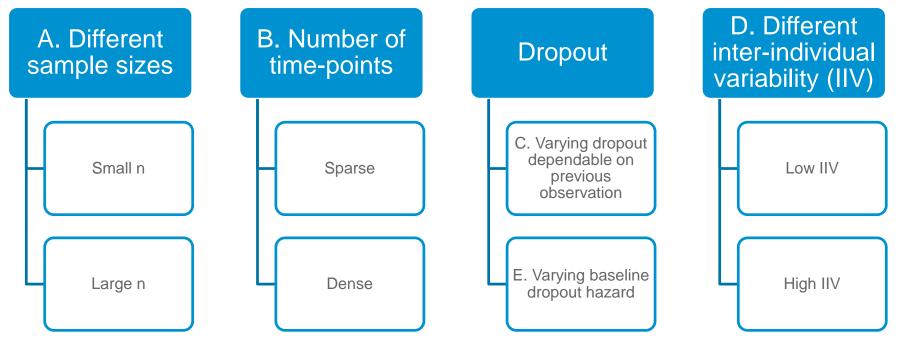
variability

Objective

Examine impact of different correlation structure assumptions at arm level on aggregate level data analyses, under a MBMA framework

- M1: Compound symmetry of residual errors at arm level
- M2: Autoregressive residual errors at arm level
- M3: Independent residual errors (no arm level correlation)

Scenarios:



Overview

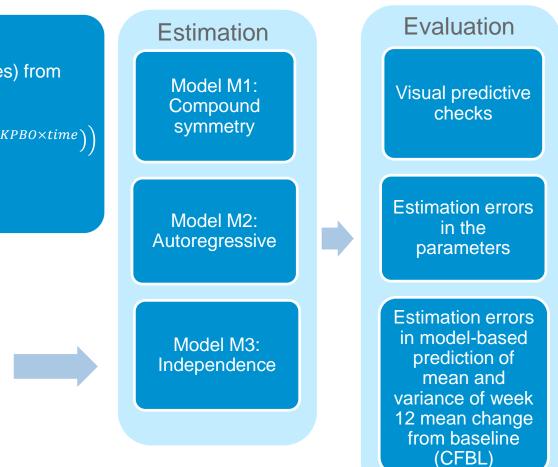
Simulate 100 datasets (each with 10 studies) from assumed individual model:

Response (t) =
$$BL \times (1 - Pmax \times (1 - e^{-KPBO \times time}))$$

 $(1 - \frac{Emax \times Dose}{ED50 + Dose})$

Generate aggregate level data

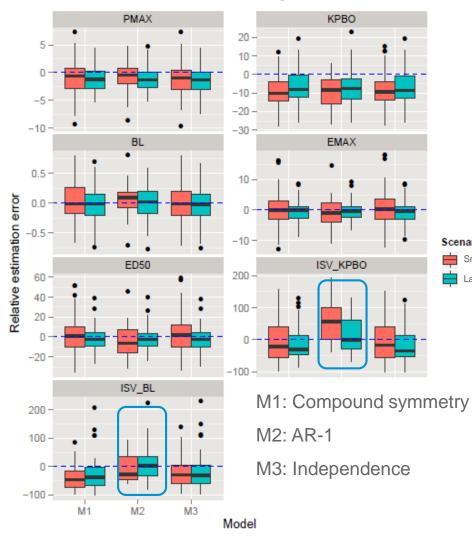
For each simulated dataset, compute the average at each timepoint for each study-arm

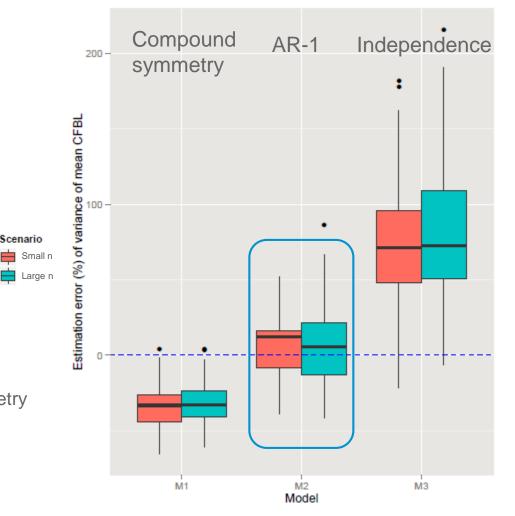


 $Estimation \ error = \frac{Model \ estimated - True}{True} * 100\%$

Scenario A: Different study size (n)

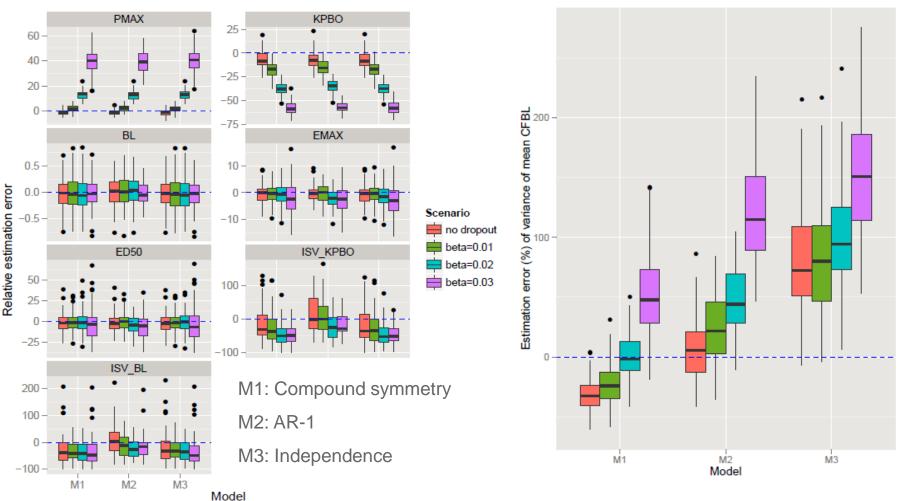
 No appreciable differences; slight improvement in precision of some parameters with larger n





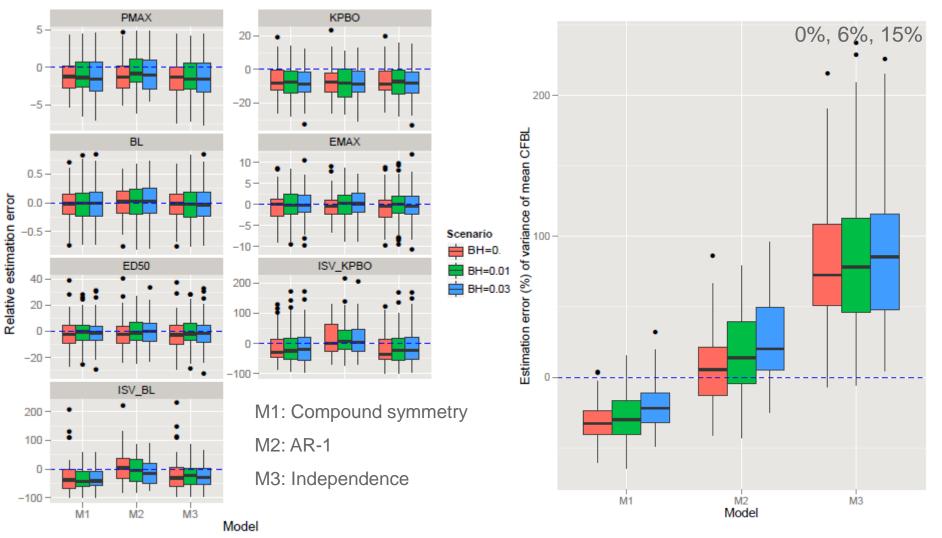
Scenario C: Varied dropout

- Bias in PMAX and KPBO estimates in the presence of dropout; increase with higher dropout (0, ~15, 30, 50%)
- Overestimation of mean week 12 CFBL; inflation of the variance



Scenario E: Varied baseline dropout hazard

- No differences in parameters and mean CFBL
- Tendency towards increase in variance of mean CFBL with larger dropout



Conclusions

- 1. Dropout at the individual level affects the ability to estimate some model parameters at the aggregate level (both accuracy and precision)
- 2. Incorporation of correlated error structures at the arm level:
 - Similar estimates of fixed effect parameters and prediction of the mean week 12 change from baseline for all models
 - Autoregressive correlation structure seems to perform better for estimation of variance of the mean week 12 change from baseline, but minimal differences so independent residual error model may be sufficient
 - Recommendation: Explore models (e.g. autoregressive model) that incorporate correlation and include it where possible

Timothy Nicholas, PhD

Tom Tensfeldt, PhD

Jae Eun Ahn, PhD

Sridhar Duvvuri, PhD

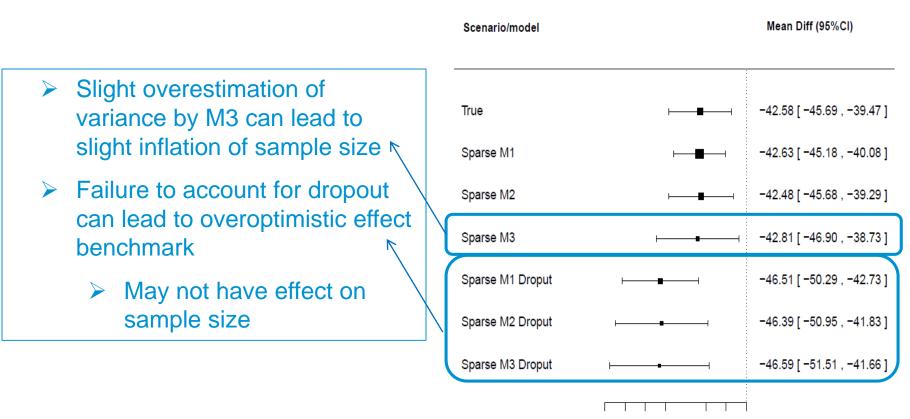
Pfizer Clinical Pharmacology and Pharmacometrics group

Angela Birnbaum, PhD

BACKUP SLIDES

Implications in application to clinical trial design/success criteria

1. If the purpose of the MBMA is to use the comparator information to design a study for a similar drug of interest



-52.00 -46.00 -40.00

Mean change from baseline

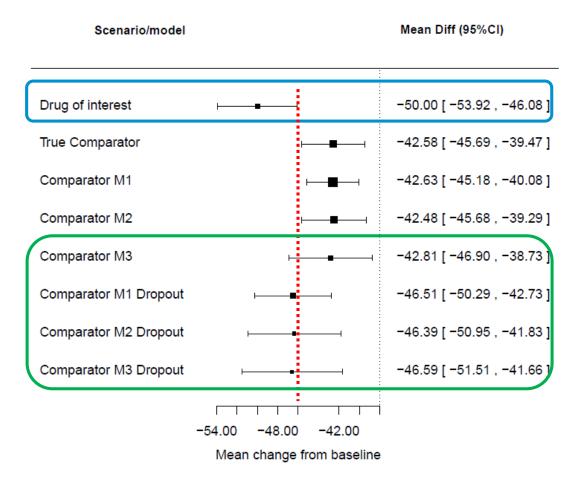
Implications in application to clinical trial design/success criteria

2. If the purpose is to make a decision about whether a drug of interest sufficiently differentiate from a comparator

Assuming success criteria:

-95% CI of week 12 mean CFBL excludes 38

-95%CI does not overlap with the comparator



Study designs

Study ID	Sample size (per dose)		Doses	Time-points	
	Small	Large		Sparse	Dense
1	50	100	0, 50, 100, 200, 400	0, 3, 6	0, 1, 3, 6
2	50	100	0, 100, 300, 500,1000	0, 3, 6	0, 1, 3, 6
3	50	100	0, 100, 200, 300, 400	0, 3, 6, 12	0, 1, 3, 6, 9, 12
4	50	100	0, 300, 400, 500, 600	0, 3, 6, 12	0, 1, 3, 6, 9, 12
5	100	200	0, 200, 400	0, 6	0, 3, 6
6	100	200	0, 400, 600	0, 6	0, 3, 6
7	100	200	0, 200, 600	0, 6	0, 3, 6
8	250	500	0, 200, 400	0, 6, 12	0, 3, 6, 9, 12
9	250	500	0, 400, 600	0, 6, 12	0, 3, 6, 9, 12
10	250	500	0, 200, 600	0, 6, 12	0, 3, 6, 9, 12

Simulation model

Assume individual model:	Parameters	Values
	PMAX	0.2
$Yij(t) = \frac{BL_{ii}(1 - PBO_{ii})(1 - DRUG_{ii})}{DRUG_{ii}}$	KPBO	0.5
	BL	100
$BL_{ij} = BL + \eta_{ij}^{BL,ind} + \eta_i^{BL,study}$	EMAX	0.4
	ED50	200
$PBO_{ij} = (PMAX + \eta_{ij}^{PMAX,ind}) *$	Baseline hazard	0, 0.01, 0.03
KDDO in d. KDDO starder	Beta	0, 0.01, 0.02, 0.03
$(1 - exp^{-KPBO(\exp(\eta_{ij}^{KPBO,ind} + \eta_i^{KPBO,study}))time})$	IIV PMAX	0.05
DDUC - EMAX*Dose whore instudy insubject	IIV KPBO	D1: 0.2 D2: 0.4
$DRUG_{ij} = \frac{EMAX * Dose}{ED50 + Dose}$, where i=study, j=subject	IIV BL	D1: 4 D2: 8
	ISV BL	1

Dropout model:

Censor simulated data based on hazard function:

h(t) = baseline hazard * exp(*beta* * *previous observation*)

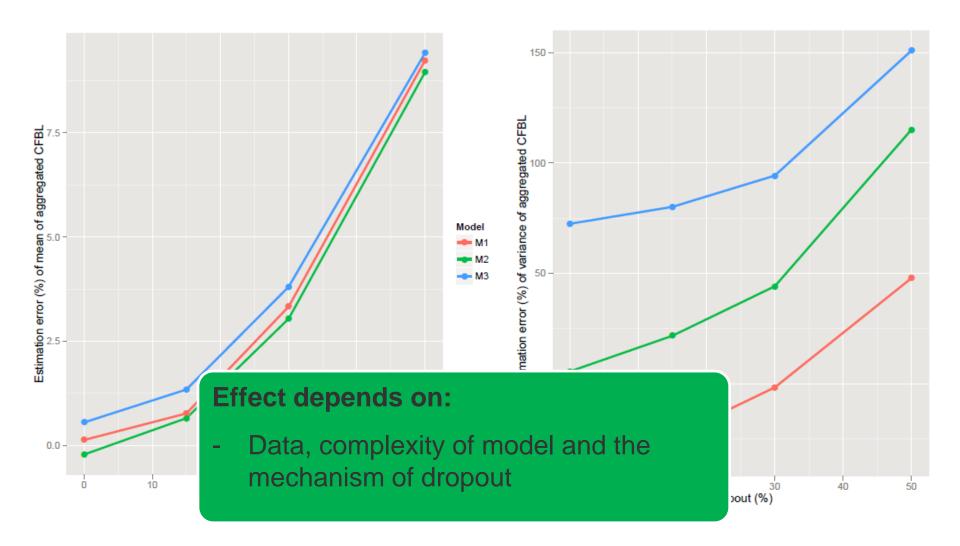
ISV KPBO

SIGMA

0.1

1

Sizable estimation error beyond 30%



Example of estimating IAV

IAV=0

- IF(ARM.EQ.1) IAV=ETA(1)
- IF(ARM.EQ.2) IAV=ETA(2)
- IF(ARM.EQ.3) IAV=ETA(3)
- IF(ARM.EQ.4) IAV=ETA(4)
- IF(ARM.EQ.5) IAV=ETA(5)
- IF(ARM.EQ.6) IAV=ETA(6)

BASE=TVBASE*EXP(IAV)

```
$OMEGA BLOCK (1) 0.05
$OMEGA BLOCK (1) SAME
$OMEGA BLOCK (1) SAME
$OMEGA BLOCK (1) SAME
$OMEGA BLOCK (1) SAME
```